127 research outputs found

    Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping

    Get PDF
    Immobility in the tail suspension test (TST) is considered a model of despair in a stressful situation, and acute treatment with antidepressants reduces immobility. Inbred strains of mouse exhibit widely differing baseline levels of immobility in the TST and several quantitative trait loci (QTLs) have been nominated. The labor of manual scoring and various scoring criteria make obtaining robust data and comparisons across different laboratories problematic. Several studies have validated strain gauge and video analysis methods by comparison with manual scoring. We set out to find objective criteria for automated scoring parameters that maximize the biological information obtained, using a video tracking system on tapes of tail suspension tests of 24 lines of the BXD recombinant inbred panel and the progenitor strains C57BL/6J and DBA/2J. The maximum genetic effect size is captured using the highest time resolution and a low mobility threshold. Dissecting the trait further by comparing genetic association of multiple measures reveals good evidence for loci involved in immobility on chromosomes 4 and 15. These are best seen when using a high threshold for immobility, despite the overall better heritability at the lower threshold. A second trial of the test has greater duration of immobility and a completely different genetic profile. Frequency of mobility is also an independent phenotype, with a distal chromosome 1 locus

    To What Extent is Blood a Reasonable Surrogate for Brain in Gene Expression Studies: Estimation from Mouse Hippocampus and Spleen

    Get PDF
    Microarrays are designed to measure genome-wide differences in gene expression. In cases where a tissue is not accessible for analysis (e.g. human brain), it is of interest to determine whether a second, accessible tissue could be used as a surrogate for transcription profiling. Surrogacy has applications in the study of behavioural and neurodegenerative disorders. Comparison between hippocampus and spleen mRNA obtained from a mouse recombinant inbred panel indicates a high degree of correlation between the tissues for genes that display a high heritability of expression level. This correlation is not limited to apparent expression differences caused by sequence polymorphisms in the target sequences and includes both cis and trans genetic effects. A tissue such as blood could therefore give surrogate information on expression in brain for a subset of genes, in particular those co-expressed between the two tissues, which have heritably varying expression

    Genetic predisposition for aggressive behaviour related with dopamine and serotonin pathways : an overview

    Get PDF
    Abstract in proceedings of the Fourth International Congress of CiiEM: Health, Well-Being and Ageing in the 21st Century, held at Egas Moniz’ University Campus in Monte de Caparica, Almada, from 3–5 June 2019.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.info:eu-repo/semantics/publishedVersio

    Assessing Reliability, Heritability and General Cognitive Ability in a Battery of Cognitive Tasks for Laboratory Mice

    Get PDF
    This report includes the first sibling study of mouse behavior, and presents evidence for a heritable general cognitive ability (g) factor influencing cognitive batteries. Data from a population of male and female outbred mice (n = 84), and a replication study of male sibling pairs (n = 167) are reported. Arenas employed were the T-maze, the Morris water maze, the puzzle box, the Hebb-Williams maze, object exploration, a water plus-maze, and a second food-puzzle arena. The results show a factor structure consistent with the presence of g in mice. Employing one score per arena, this factor accounts for 41% of the variance in the first study (or 36% after sex regression) and 23% in the second, where this factor also showed sibling correlations of 0.17-0.21, which translates into an upper-limit heritability estimate of around 40%. Reliabilities of many tasks are low and consequently set an even lower ceiling for inter-arena or sibling correlations. Nevertheless, the factor structure is seen to remain fairly robust across permutations of the battery composition and the current findings fit well with other recent studie

    Peripheral Blood RNA Expression Profiling in Illicit Methcathinone Users Reveals Effect on Immune System

    Get PDF
    Methcathinone (ephedrone) is relatively easily accessible for abuse. Its users develop an extrapyramidal syndrome and it is not known if this is caused by methcathinone itself, by side-ingredients (manganese), or both. In the present study we aimed to clarify molecular mechanisms underlying this condition. We used microarrays to analyze whole-genome gene expression patterns of peripheral blood from 20 methcathinone users and 20 matched controls. Gene expression profile data were analyzed by Bayesian modeling and functional annotation. Of 28,869 genes on the microarrays, 326 showed statistically significant differential expression with FDR adjusted p-values below 0.05. Quantitative real-time PCR confirmed differential expression for the most of the genes selected for validation. Functional annotation and network analysis indicated activation of a gene network that included immunological disease, cellular movement, and cardiovascular disease functions (enrichment score 42). As HIV and HCV infections were confounding factors, we performed additional stratification of subjects. A similar functional activation of the “immunological disease” category was evident when we compared subjects according to injection status (past versus current users, balanced for HIV and HCV infection). However, this difference was not large therefore the major effect was related to the HIV status of the subjects. Mn–methcathinone abusers have blood RNA expression patterns that mostly reflect their HIV and HCV infections

    Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Get PDF
    Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3) in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR) function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders

    Advancing Paternal Age Is Associated with Deficits in Social and Exploratory Behaviors in the Offspring: A Mouse Model

    Get PDF
    Background: Accumulating evidence from epidemiological research has demonstrated an association between advanced paternal age and risk for several psychiatric disorders including autism, schizophrenia and early-onset bipolar disorder. In order to establish causality, this study used an animal model to investigate the effects of advanced paternal age on behavioural deficits in the offspring. Methods: C57BL/6J offspring (n = 12 per group) were bred from fathers of two different ages, 2 months (young) and 10 months (old), and mothers aged 2 months (n = 6 breeding pairs per group). Social and exploratory behaviors were examined in the offspring. Principal Findings: The offspring of older fathers were found to engage in significantly less social (p = 0.02) and exploratory (p = 0.02) behaviors than the offspring of younger fathers. There were no significant differences in measures of motor activity. Conclusions: Given the well-controlled nature of this study, this provides the strongest evidence for deleterious effects of advancing paternal age on social and exploratory behavior. De-novo chromosomal changes and/or inherited epigeneti

    Genotyping DNA pools on microarrays: Tackling the QTL problem of large samples and large numbers of SNPs

    Get PDF
    BACKGROUND: Quantitative trait locus (QTL) theory predicts that genetic influence on complex traits involves multiple genes of small effect size. To detect QTL associations of small effect size, large samples and systematic screens of thousands of DNA markers are required. An efficient solution is to genotype case and control DNA pools using SNP microarrays. We demonstrate that this is practical using DNA pools of 100 individuals. RESULTS: Using standard microarray protocols for the Affymetrix GeneChip(® )Mapping 10 K Array Xba 131, we show that relative allele signal (RAS) values provide a quantitative index of allele frequencies in pooled DNA that correlate 0.986 with allele frequencies for 104 SNPs that were genotyped individually for 100 individuals. The sensitivity of the assay was demonstrated empirically in a spiking experiment in which 15% and 20% of one individual's DNA was added to a DNA pool. CONCLUSION: We conclude that this approach, which we call SNP-MaP (SNP microarrays and pooling), is rapid, cost effective and promises to be a valuable initial screening method in the hunt for QTLs

    Sexual dimorphism in the social behaviour of Cntnap2-null mice correlates with disrupted synaptic connectivity and increased microglial activity in the anterior cingulate cortex

    Get PDF
    A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period

    Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains

    Get PDF
    Background miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation that play a major role in normal biological functions and diseases. Little is currently known about how expression of miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains, allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus (QTL) analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural phenotypes. Results We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA’s expression correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance and WNT signalling. Conclusions The BXD reference panel allowed us to establish genetic regulation and characterize biological function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA, a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and cocaine related behaviours is strongly supported by previous functional studies, demonstrating the value of this approach for discovery of new functional roles and downstream processes regulated by miRNA
    corecore